Шаровой кран 16 x 12 дюймов, 600 фунтов, установленный на цапфе изготовлен по стандарту API6D. Корпус клапана изготовлен из A105. Он имеет конструктивные характеристики разъемного типа, бокового монтажа, фиксированного шара, уменьшенного диаметр. Его режим подключения — RF. И он имеет пневматический режим работы.
Двойной эксцентриковый дроссельный клапан 16 дюймов, 150 фунтов изготовлены по стандарту API 609. Корпус клапана изготовлен из ASTM A216 WCB. Он имеет структурные характеристики высокой производительности и двойного эксцентриситета. Два клапана используют одну червячную головку. Режим подключения — вафля. И есть турбина режим работы.
Клапан конденсатоотводчика 1 дюйм, 300 фунтов изготовлен в соответствии с стандарту GB/T22654-2008. Корпус клапана изготовлен из LF2 CL1. Он имеет структурные характеристики термодинамического типа. Его режим подключения — RF.
Изготовлен переключающий клапан 2 дюйма, 300 фунтов. согласно стандарту ASME B16.34. Корпус клапана изготовлен из ASTM A216 WCB. Это имеет структурные характеристики крышки заглушки, общий внутренний материал это F316L. Его режим подключения — RF. И у него есть режим работы с маховиком.
12-дюймовая шиберная задвижка из литой стали 1500 фунтов изготовлено по стандарту API 6D. Корпус клапана изготовлен из A216 WCB. Он имеет Структурные характеристики болта крышки корпуса, полнопоточный, очищаемая труба, противопожарный дизайн. Его режим подключения — RTJ. И у него есть режим работы коробки передач.
Клапан с угловым сильфонным уплотнением DN200 PN16 изготовлен в соответствии со стандартом BS EN 13709. Корпус клапана изготовлен из EN 10213 1.4408. Он имеет структурные характеристики болта крышки корпуса, открытого кронштейна стойки, углового типа и сильфонного уплотнения. Его режим подключения — RF. И он имеет режим работы маховика.
Шаровой кран DN300 PN63 изготовлен по стандарту API 6D. Корпус клапана изготовлен из ASTM A105. Он имеет структурные характеристики фиксированного шара, полнопроходного, противопожарного, антистатического и противолетающего стержня клапана. Его режим подключения соответствует стандарту EN1092-1 D. Он имеет режим работы червячного колеса.
16-дюймовый шаровой кран 900LB изготовлен в соответствии со стандартом API 6D. Корпус клапана изготовлен из A350 LF2. Он имеет структурные характеристики полностью сварного, фиксированного шара и полнопроходного отверстия. Режим соединения - BW. И он имеет режим работы турбины.
В клиновом задвижном клапане уплотнительные поверхности затвора имеют клиновидную форму, образуя определенный угол относительно центральной оси затвора. Затвор приводится в действие штоком клапана для закрытия. По мере увеличения усилия штока возрастает и нормальная сила, действующая на клиновидные уплотнительные поверхности, создавая эффект принудительного уплотнения. Такая конструкция значительно улучшает герметичность в условиях низкого давления. При открытии уплотнительные поверхности затвора мгновенно отсоединяются от седла, что помогает уменьшить износ уплотнительных поверхностей и продлить срок службы клапана. Применимые стандарты для Клиновые задвижки Клиновые задвижки обычно изготавливаются в соответствии со следующими стандартами: ● GB/T 12234-2019 – Стальные задвижки с болтовым креплением крышки для нефтегазовой промышленности ● GB/T 12232-2005 – Задвижки общего назначения из чугуна с фланцами ● Стандарт API 600 (2015) – Сталь задвижка для нефтяной и газовой промышленности Типы клиновых задвижек Задвижки клинового типа обычно выпускаются в трех вариантах исполнения: сплошная клиновая задвижка, гибкая клиновая задвижка и двойная клиновая задвижка. Гибкий клиновой затвор и двойной клиновой затвор основаны на контролируемой деформации уплотнительных поверхностей для достижения улучшенного контакта с седлом клапана. Такая конструкция повышает надежность уплотнения и эффективно предотвращает заедание или заклинивание затвора, вызванное колебаниями температуры, обеспечивая бесперебойную работу даже в условиях колеблющихся температур. Конструкция и принцип герметизации параллельного задвижного клапана В задвижке с параллельными заслонками уплотнительные поверхности на входном и выходном концах заслонки параллельны центральной оси заслонки. В однозадвижных конфигурациях герметизация в основном достигается за счет перемещения плавающей заслонки или плавающего седла в нужное положение рабочей средой. В двухзадвижных конфигурациях герметизация может осуществляться с помощью пружин или компенсационного механизма между заслонками. На протяжении всего процесса открытия и закрытия уплотнительные поверхности заслонки и седла остаются в постоянном контакте, обеспечивая надежную герметизацию. Применимые стандарты для параллельных задвижек К общим стандартам для параллельных задвижек относятся: ● GB/T 23300-2009 – Параллельные задвижки ● JB/T 5298-2016 – Стальные параллельные задвижки для трубопроводов ● API 6D – Трубопроводные клапаны для нефтегазовой промышленности Типы и характеристики параллельных задвижек Параллельные задвижки выпускаются в однозатворном и двухзатворном исполнении. ● Задвижки могут иметь сквозные отверстия или быть сплошными. Задвижки со сквозными отверстиями соответствуют внутреннему диаметру седла, что облегчает очистку и дренаж трубопровода. ● В зависимости от требований применения, уплотнение может быть выполнено на входном, выходном или на обоих концах. Данная конструкция обеспечивает гибкость в выборе способов герметизации, со...
Повреждение уплотнительных поверхностей клапанов обычно является результатом множества факторов, включая выбор материала, условия эксплуатации, методы работы и техническое обслуживание. Ниже приведено краткое описание наиболее распространенных причин: 1. Механические повреждения ● Одежда: Твердые частицы в среде (такие как песок или сварочный шлак) вызывают эрозию уплотнительной поверхности, в результате чего образуются царапины или бороздки. ● Абразивные царапины : Фрикционный износ, вызванный относительным перемещением уплотнительных поверхностей во время работы. клапан Открытие и закрытие, особенно в герметичных соединениях типа «металл к металлу». ● Ударные повреждения: Деформация уплотнительной поверхности, вызванная высокоскоростным воздействием жидкости или быстрым открытием и закрытием клапана, приводит к ударной нагрузке. 2. Химическая коррозия ● Коррозия среды: Кислотные, щелочные или окислительные среды непосредственно воздействуют на материал уплотнительной поверхности, например, вызывают коррозию металла, обусловленную H₂S или хлорид-ионами. ● Электрохимическая коррозия : При воздействии электролита на уплотнительные пары, изготовленные из разнородных металлов, может возникать гальваническая коррозия вследствие образования электрохимической ячейки. ● Эрозия-коррозия: Совместное воздействие агрессивных сред и высокоскоростного потока ускоряет износ уплотнительной поверхности. 3. Термическое повреждение ●Термическая усталость: Частые колебания температуры вызывают многократное термическое расширение и сжатие уплотнительной поверхности, что приводит к растрескиванию или деформации. ●Высокотемпературное окисление: При повышенных температурах уплотнительная поверхность может подвергаться окислению, затвердеванию или выгоранию, что часто наблюдается в паровых клапанах. ●Термический шок: Внезапное воздействие сред с высокой или низкой температурой может привести к растрескиванию уплотнительной поверхности, например, при быстром образовании конденсата или проникновении холодной среды. 4. Неправильная установка и эксплуатация ●Неправильная установка: Неправильная установка клапана или чрезмерное напряжение в трубопроводе могут привести к неравномерной нагрузке на уплотнительные поверхности. ●Чрезмерное затягивание: Чрезмерное предварительное натяжение штока клапана или болтов может привести к деформации или повреждению уплотнительной поверхности, особенно в клапанах с мягким уплотнением или мягкими уплотнительными прокладками. ●Неудовлетворительная работа: Резкое открывание и закрывание или чрезмерное усилие при работе могут привести к повреждению уплотнительных поверхностей в результате удара. 5. Материальные дефекты ●Неправильный выбор материалов: Материал уплотнительной поверхности не обладает достаточной устойчивостью к воздействию технологических сред, высоким температурам или износу, например, как в случае использования углеродистой стали в кислотных средах. ●Производственные дефекты: Дефекты в наплавленном или защитном слое, включая по...
Эти симптомы обычно указывают на несоответствие водно-электролитного баланса. valve selection, or system configuration. If left unaddressed over prolonged operation, they can accelerate valve wear and pose safety risks. Based on field experience, this article outlines the common causes of valve vibration and noise and provides practical guidance for troubleshooting. 1. Basic Manifestations of Valve Vibration and Noise Valve vibration usually appears as noticeable oscillations of the valve body, stem, or connected piping. Noise may present as humming, whistling, or banging sounds. These phenomena often occur simultaneously and are primarily related to the following factors: ● Abnormal flow velocity or pressure differential ● Unstable internal forces within the valve ● Mismatch between actual operating conditions and valve design 2. Common Causes Analysis 1. Excessive Flow Velocity or Pressure Differential When the fluid passes through the throttling section of a valve at high speed, strong turbulence and pressure fluctuations are likely to occur, causing periodic impact on internal components. This issue is particularly pronounced when using standard globe valve s or ball valves under regulating conditions. Typical manifestations include: ● Noise increases as the valve opening decreases ● Vibration intensifies under high-pressure-drop conditions 2. Improper Valve Selection Incorrect valve selection is a common root cause of vibration, such as: ● Using on/off valves for prolonged throttling ● Oversized valve operating at small openings for extended periods ● Insufficient pressure rating or structural rigidity of the valve These conditions can cause unstable movement of the valve plug or ball, resulting in vibration and noise. 3. Loose or Worn Internal Components After long-term operation, the following issues are commonly observed: ● Wear of valve plugs or discs ● Increased clearance between the stem and guiding parts ● Loosened fasteners Non-design clearances amplify fluid impact, leading to persistent noise. If vibration is accompanied by metallic knocking sounds, the condition of internal components should be checked as a priority. 4. Cavitation or Flashing In liquid service, cavitation or flashing occurs when local pressure drops below the saturation vapor pressure. Bubble collapse in high-pressure regions impacts internal components, often accompanied by noise and vibration. Typical signs include: ● Sand- or gravel-like scraping sounds ● Rapid wear of internal components ● Significant pressure fluctuations 5. Insufficient Piping Support or System Resonance Some vibrations are not directly caused by the valve. When upstream or downstream piping lacks adequate support, or when the piping structure resonates near the fluid pulsation frequency, system resonance may occur, amplifying existing vibrations. 3. On-Site Troubleshooting Approach It is recommended to follow the sequence below when troubleshooting: ● Verify whether the pressure, flow rate,...
Если вы заинтересованы в наших продуктах и хотите знать больше деталей,пожалуйста, оставьте здесь сообщение,мы ответим вам как только мы можем.
«все сделано идеально. Мы благодарны за доверие, которое вы проявляете к нашей организации, и полностью уверены, что наша напряженная работа будет плодотворной для обеих наших компаний. Вы действительно драгоценный камень для дервосов. наши лучшие комплименты вам!
«Ваше обслуживание клиентов является выдающимся. ... ... обратные клапаны работают нормально, и обслуживание клиентов наверняка восполнит это. ... ... обслуживание клиентов не может быть лучше ".
«Мы очень довольны всей вашей любезной поддержкой бизнеса. Вы всегда любезно отвечаете на все наши вопросы. Поэтому мы благодарим вас за все ваши усилия. Когда у нас будет новый проект, мы с готовностью свяжемся с вами!»
«Я получил ваш документ сегодня. Большое вам спасибо. наш инженер говорит, что ваш отчет, кажется, был сделан довольно хорошо, он оценил, конечно, мы не получили ванн, поэтому у нас не было чека, но я считаю, что проблем не будет, надеюсь, что так и будет ».
«Благодарим Вас за взаимодействие с нашей организацией в отношении dervos. Мы размещаем различные заказы с dervos, и продукция всегда выполнялась на заводе-изготовителе, на чертеже и в указанные сроки. dervos - очень гордая компания и уделяет огромное внимание поставке качественной продукции их клиенты. "